Ion Exchange Chromatography - An Overview

PDF Publication Title:

Ion Exchange Chromatography - An Overview ( ion-exchange-chromatography-an-overview )

Next Page View | Return to Search List

Text from PDF Page: 001

Chapter 1 Ion Exchange Chromatography - An Overview Yasser M. Moustafa and Rania E. Morsi Additional information is available at the end of the chapter http://dx.doi.org/10.5772/55652 1. Introduction Chromatography is the separation of a mixture of compounds into its individual components based on their relative interactions with an inert matrix. However, chromatography is more than a simple technique, it is an important part of science encompassing chemistry, physical chemistry, chemical engineering, biochemistry and cutting through different fields. It is worth to be mentioned here that the IUPAC definition of chromatography is "separation of sample components after their distribution between two phases". 1.1. Discovery and history of chromatography [1, 2] M. Tswett (1872-1919), a Russian botanist, discovered chromatography in 1901 during his research on plant pigments. According to M. Tswett: "An essential condition for all fruitful research is to have at one's disposal a satisfactory technique". He discovered that he could separate colored leaf pigments by passing a solution through a column packed with adsorbent particles. Since the pigments separated into distinctly colored bands as represented in Figure 1, he named the new method “chromatography” (chroma – color, graphy –writing). Tswett emphasized later that colorless substances can also be separated using the same principle. The separation results from the differential migration of the compounds contained in a mobile phase through a column uniformly packed with the stationary matrix. A mobile phase, usually a liquid or gas, is used to transport the analytes through the stationary phase while the matrix, or stationary phase, is generally an inert solid or gel and may be associated with various moieties, which interact with the analyte(s) of interest. Interac‐ tions between the analytes and stationary phase are non-covalent and can be either ionic or non-ionic in nature depending on the type of chromatography being used. Compo‐ nents exhibiting fewer interactions with the stationary phase pass through the column more quickly than those that interact to a greater degree. © 2013 Moustafa and Morsi; licensee InTech. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

PDF Image | Ion Exchange Chromatography - An Overview


PDF Search Title:

Ion Exchange Chromatography - An Overview

Original File Name Searched:


DIY PDF Search: Google It | Yahoo | Bing

Infinity Supercritical 10L CO2 Extractor Supercritical CO2 Hemp Oil Extraction for Full Spectrum Botanical Oil which retains the terpenes and other valuable plant components during extraction. System runs silent with small footprint of 24 inches by 48 inches. More Info

$149,000 Complete CO2 Extraction System: Botanical full spectrum oil extraction. More Info

High Quality Full Spectrum Oil: More Info

Technology for Supercritical CO2 Extraction: More Info

CONTACT TEL: 608-238-6001 Email: greg@infinitysupercritical.com | RSS | AMP